

ABACUSBIO LIMITED

Make a difference to food production internationally using science & technology

THEN & NOW 10 YEARS OF SHEEP IRELAND

ICBF and Sheep Ireland genetics conference: 'Sustainable Farming – Progress through Genetics' 5th of December 2018 Tim Byrne AbacusBio International Limited Edinburgh

Back then

- Malone 2006
- BALANCED breeding goal
- SUSTAINABLE genetic gain

JUNE 2006.

Back then

- Development strategy put together
- 20 recommendations covering all aspects
- Start point of Sheep Ireland

Breeding Profitable Sheep in Ireland Recommendations to the Interim Sheep Board from the Strategy Project Team

A Report prepared for the Interim Sheep Board by

Peter Amer¹, Peter Fennessy¹, Murray Rohloff², Tim Byrne¹, Seamus Hanrahan³, Tim Keady³, Michael McHugh³, Roel Veerkamp⁴, Andrew Cromie⁵ and Brian Wickham⁵

¹AbacusBio Limited, ²Awareka Partnership, ³Teagasc, ⁴Animal Sciences Group, The Netherlands, ⁵ICBF

FINAL REPORT SUBMITTED TO THE INTERIM SHEEP BOARD 11 September 2008

Disclaimer

Every effort has been made to ensure the accuracy of the investigations, and the content and information within this document. However Abscussibo Limited expressly disclaims any and all labilities contingent or otherwise that may arise from the use of the information or recommendations of this report. Abacussibo Limited Danekin, New Yeshand, Phone 440 (0) 347 0737. Examily paramegabacustos on ma

Commercial-in-Confidence

Submitted to Interim Sheep Board: 11 September 2008

Page 1 of 36

Back then - Industry structure

Back then – Challenges

- Part-time sheep farmers with small flocks
- Shrinking market
- Small number of breeders familiar with performance recording on a few traits
- Commercial farmers:
 - Were not involved
 - Had not supported the breeders who used performance recording

Terminal focus

The new focus

Maternal traits for functional and more profitable sheep

- Needed data

Communication

Timeline

- 2009 Sheep Ireland born/ MALP
- 2010 CPT begins
- 2011 1st LambPlus ram sale
- 2012 Online ram search goes live
- 2013 STAP industry payment scheme launched
- 2014 New Indexes released
- 2015 New database and website launched
- 2016 Collected 18,000 DNA Samples/ Data quality index
- 2017 Health Index
- 2018 Launched LambPlus App

LambPlus

- The service centre
- Add value
- Educate
- Build confidence

Maternal Lamb Producer Groups

- 22 commercial flocks
- Source of Commercial data
- DNA-based parentage technology

Ceased in 2015

Central Progeny Test (CPT)

- 4 commercial farms ~ 2,500 ewes
 - Genetic Linkage
 - Collecting data on novel traits
 - Proving new maternal bloodlines
 - Validation

Phase 1: Setting up

Phase 2: Substantial data flow

Phase 3: Expansion

Growth in data – lambs recorded

Terminal index trend

Replacement index trend

Replacement sub-index trends

What's it worth?

What's it worth?

Searches on RamSearch.ie

The future - New traits

- Age at slaughter
- Lamb vigour
- Mothering ability
- Mastitis
- Ewe productivity (number of lambings)
- GHG emissions

The future

- Inclusion of more traits
- Routine genomic parentage assignment
- International EBVs
- Across-breed evaluations
- Maternal sub-index gains
- Genomic Evaluations
- ...

New challenges

- Overcome use of non-recorded rams (est. to be 75% of rams used)
- Labour costs
- Global market uncertainty
- Lack of factory data from commercial animals
- Consumer traits (e.g. eating quality)
- Overall industry direction a new "Malone" report?
- The hippo is still chasing

ABACUSBIO LIMITED

Make a difference to food production internationally using science & technology

Parentage assignment using genomics

Donagh Berry¹, Aine O'Brien¹, Ciara Long², Thomas Browne², John McCarthy², Daragh Mathews², Kevin McDermott², Noirin McHugh¹ ¹Teagasc, Moorepark,

² Sheep Ireland

Donagh.berry@teagasc.ie

Sheep Ireland/ICBF Annual Conference December 2018

Why important?

- Accurate genetic evaluations (national + flock)
 - High reliability
 - High precision (less fluctuations in proofs)
- Knowledge of inter-animal relationships
 - Mating plans inbreeding
- Integrity of flockbook

The theory

Parentage – why do many markers?

Parentage verification/validation

Impact of parentage errors

Points to note

- Parentage error is worse than no parentage recorded
- Need around ~100 carefully selected DNA variants for parentage (in)validation
 - Left in limbo if parentage not validated
- Parentage assignment
 - At least 350 carefully selected DNA variants

Parentage assignment

"Sire 1"ATTCGGGCTGTG..... "Sire 2"GCGATGGCAATG..... "Sire 3"TAGGACGCTATG.....

"Sire 4"GCATTCAGTCAT.....

Proposed SireGTCGCCGCTGA...

.....CTAGATAGGATT.....

.....GCATTCAGTCAT....GCTAGTTACTGG.....

Offspring

In practice

Progress

- Data now uploaded to database
 - Greater data integrity and monitoring
 - Quality controls implemented
- Ordering genotypes
 - Evaluation of different tag options
- Parentage verification \rightarrow parentage assignment
 - Based on cattle developments
- More rapid turnaround time
 - 3-4 weeks from receiving sample

Fool-proof???

- Sample mix-up
 - Wrong parent tagged
 - Wrong lamb tagged
 - Samples mix-labelled
 - Samples mixed up in lab
 - Duplicate sample IDs (international)
- Dates of births mixed up
 - Lamb is identified as sire of the sire
- Poor DNA quality
 - Genotypes mis-called and parent is invalidated

Fool-proof???

- Biology
 - Identical twins have the same DNA (very rare)
 - Very close inbred individuals
 - DNA deletions at the marker
 - Gender mis-called (sire→ dam; dam→ sire)
 - Swyer syndrome female with male DNA
- Database issues
- Parents not genotyped
 - Cannot fill in the blanks

Take home message

Ewe Efficiency & Greenhouse Gases

Fiona McGovern & Noirin McHugh

Genetics Conference 2018 5th December 2018

Overview

- What is efficiency?
- Ewe Efficiency -

The replacement index

• Future research

What is Efficiency?

Technology DataRecording CarbonFootprint Genetics CarcassWeight Handling Production Live-weight

Your method of production yields a more valuable output per unit input....

DiseaseResistance

SoilFertility Performance SilageQuality

> GrassUtilisation GreenhouseGases LitterSize Infrastructure Efficiency

What is important on your farm....

Investigate the variation - combined litter weight relative to ewe weight at same time

Benchmarking - Flock A

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

New Sheep Research Greenhouse Gases

Ireland's GHG Emissions....

Ireland's Greenhouse Gas emissions by sector for 2016 (EPA, 2018)

Ireland's GHG Emissions....

> To develop, validate and deploy the necessary tools and optimal strategies to achieve sustainable and quantifiable genetic gain through environmental and economic efficiency

Collaboration Research

> PAC Chambers

• New ewe efficiency trait under development

> Information required to derive this trait is routinely available

- Useful Benchmarking report within and between flocks
- Research phase underway into new traits of importance

Genetic Index Traits

Is the trait important?

Is there data / can data be easily collected?

Acknowledgements:

Dept. of Agriculture, Food and the marine

*Teagasc

Sheep Ireland

Thank you for your attention.

Contact: Fiona.McGovern@teagasc.ie

Updating the Genetic Evaluation

T. Pabiou & Sheep Ireland team

Genetic evaluation

Sheep Ireland: Profit through science

Updating Genetic evaluation

Why updating genetic evaluations?

- To gain accuracy (1/2)
 - By updating the 'genetic parameters'
 - Snapshot of the population genetic make-up to calculate the heritability & genetic correlations
 - ≥ Largely dependent on the records available

10

Why updating genetic evaluations?

• To gain accuracy (2/2)

Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

Sheep Irelan

Sheep Ireland evaluations from 2008

Sheep Ireland: Profit through science

2019 Production module update

- Production module =
 - Live weights
 - Scan for muscle & fat
- Update =
 - Estimation of new genetic parameters
 - Using slaughter data

New genetic parameters

- Main heritability change
 - Heritability = proportion of phenotypic variance explained by the genetic makeup

		Libis			
	Ram eff	fect 🏋	Ewe ef	fect	1 and
	(direc	t) () (X	(mater	nal)	A THREE
Heritability estimates	Current	New	Current	New	1
Live weight @ 40day (kg)	25%	23%	10%	15%	6
Live weight @ weaning (kg)	25%	23%	10%	14%	6
Live weight @ 150 days(kg)	20%	32%	12%	10%	6
Muscle scan (mm)	16%	31%	-	4%	6
Fat depth (mm)	11%	29%		10%	6
Ewe mature weight	15%	20%	-		

• Higher heritability = increase accuracy

Increase in accuracy

• Example: live weight at 150 days

Average accuracy increase across 2,742 active rams*: +10%

*Active ram = ram with progenies in last 3 years

Using Slaughter data

- Age at slaughter phenotypes
 - 3,504 records
 - Collected from CPT farms 2016 $\Leftrightarrow \Rightarrow 2017$
 - Pre-adjusted to 21kg carcass weight

Sheep Ireland: Profit through science

Genetics of age at slaughter

• Heritability

with Age at slaughter = -0.71.

quicker it'll go to slaughter

• direct 25% maternal 7%

Example: correlation between LiveWT@Weaning

Therfore the heavier the lamb at weaning, the

• Association with other traits

Validation

- To check the increase in genetic gain
- By comparing phenotypes of lambs against their parent average

Age at slaughter by **★**

*Bootstrap 2000 samples x 6000 animals: S.D. = 12.3 days

Sheep Ireland: Profit through science

Conclusion

- Current genetic evaluation has 4 modules
 - Production, Lambing, Litter size, Health
 - 2 / 4 have been updated recently
- Production module can be updated for 2019
 - Better accuracy
- Litter size module research started

Can we breed healthier sheep? Breeding as a strategy to improve sheep health

Áine O' Brien¹², Nóirín McHugh¹, Alan Bohan³, Eamon Wall⁴, Thierry Pabiou⁴, Kevin McDermott⁴, Séan Fair², Donagh Berry¹

> ¹Teagasc, Moorepark; ²University of Limerick; ³Teagasc, Athenry; ⁴Sheep Ireland, Bandon

Aine.OBrien@teagasc.ie

What do we know?

Per**Blited** at

Cost €5 million per year

What isstates alence? What is the cost? Largest individual

Is there a difference between lambs and adapts for Can we actually breed for health?

Phenotypes

Dagginess

- No = not lame
 No = no evidence of mastitis
- Yes = any sign of lame
 Yes = evidence of (historic) mastitis

Current prevalence

		Adults	Lambs
Dagginess	Soiled	30.2%	22.22%

Breeding goal

- For any trait to be included in a breeding goal 3 criteria
 - 1. Socially or economically important

2. Exhibit genetic variation

- 3. Measurable on a large scale
 - Or correlated with a trait that is

Sire prevalence - dagginess

easasc

Accurate and Food Development Accurate

Sire prevalence - lameness

Heritability estimates

Dagginess: 14% - 15%

Lameness: 6% - 12%

Mastitis: 4%

Dagginess in lambs had a maternal heritability of 5%

Breeding goal

- For any trait to be included in a breeding goal 3 criteria
 - 1. Socially or economically important

2. Exhibit genetic variation

- 3. Measurable on a large scale
 - Or correlated with a trait that is

Health index

Trait	Terminal	Replacement
Days to slaughter	34.10%	10.75%
Carcase conformation	6.60%	2.08%
Carcase fat	12.68%	4.00%
Single lambing difficulty	2.11%	0.76%
Multiple lambing difficulty	1.14%	0.41%
Lamb survival	42.12%	15.21%
Health – Dagginess Health - Lameness lamb Health - Lameness ewe	1.15% 0.11%	0.17% 0.02% 0.04%
Maternal days to slaughter		10.06%
Maternal carcase conformation		2 52%
Maternal carcase fat		1.97%
Ewe mature weight		4.8770
Maternal lamb survival		20.40%
Maternal single lambing diff		0.21%
Maternal multiple lambing diff		0.21/0
		U.11%
Number of lambs born		13.26%

Health index

Trait	Economic value	Relative emphasis (%)		
		Terminal	Replacement	
Dagginess	-€0.34 (score)	1.15	0.17	
Lameness – lamb	-€0.08 (%)	0.11	0.02	
Lameness - ewe	-€0.24 (%)		0.04	

According to Food Development Accounty

Health index

Trait	Economic value	Relative emphasis (%)		
		Terminal	Replacement	
Dagginess	-€0.34 (score)	1.15	0.17	
Lameness – lamb	-€0.08 (%)	0.11	0.02	
Lameness - ewe	-€0.24 (%)		0.04	

Elsewhere...

Worm FEC

Worm FEC

Worm FEC Facial Eczema Dagginess

Recording health

Home	Manage -
Back Animal Details:	Animal Identification Breed Ancestry
Performance:	DNA Weighing Health Stanning Mating Pregnancy Lambing Events Progeny EuroStars Sales Card
Management:	Pedigree Death Ownership History Comments Category
Texel (100%), Pedigree	29-JAN-2014, R4 (54%) T3 (53%), Female, Twin
Date of Inspection *	
	Basters d Weath
Ves No	● Yes ● No
Mastitis	Larvngeal Chondritis
O Yes O No	○ Yes ○ No
Dag Score	Condition Score
1 — Very Dirty	1 — Very Poor
2 — Dirty	© 2 – Poor Save
3 — Small Dags	○ 3 — Average
4 — Clean	4 — Good
5 — Very Clean	5 — Very Good

In conclusion...

Can we breed for healthier sheep?

We have all the tools so why not?

Improving the Rate of Genetic Gain

What factors are involved?

Kevin McDermott, Sheep Ireland Genetics Conference 2018

Genetic Gain

Genetic Gain

Genetic Gain = Intensity x Accuracy x Variation Generation Interval $\Delta G = \frac{i * r_{IH} * \sigma_A}{L}$

Genetic Gain = Intensity x Variation x Accuracy Generation Interval

Average **3 Star** Ewe lambs

Low Intensity Selection

Genetic Gain = **Intensity** x Variation x Accuracy Generation Interval

Average 4.5 Star Ewe lambs

High Intensity Selection

Genetic Gain = Intensity x Variation x Accuracy Generation Interval

• The rate of Intensity is controlled by breeders

- ≥ LambPlus Sale
- ≥ STAP
- Education & Awareness
- ≥ Catalogues
- ≥ Ram Search

Genetic Gain = <u>Intensity x Variation x Accuracy</u> Generation Interval

- Must be Heritable
- Must have Variety
- To improve a trait you must record it

• Use multiple sires will help increase variation

Genetic Gain = <u>Intensity x Variation x Accuracy</u> Generation Interval

- The correlation between the true and estimated genetic index.
 - ≥ Genomics
 - ≥ Evaluation updates
 - ≥ New traits (eg, Health, Age at Slaughter)
 - > Parentage Verification
 - ≥ Good Data

Genetic Gain = <u>Intensity x Variation x Accuracy</u> Generation Interval

• Average age of your Flock (Ewes + Rams)

- Old reliable vs New Hot shot
 - ≥ CPT
 - ≥ RamPlus

Key Message

- Set a breeding objective
 - Select Sires with higher EBV's than the flock average
- Use Multiple Sire
 - Different bloodlines
- Record lots of data
 - Especially the traits with poor heritability

Putting the €uro Stars into Action

David Coen Salesian Agricultural College Co. Limerick

Building the Foundations

Breeding sheep for over 60 years

- Texel, Suffolk and Charollais
- Belclare rams 2015

200 Breeding ewes (122 mature ewes & 88 ewe lambs)

All grass based system

Building the Foundations

Joined Sheep Ireland 2016

Started off with very low levels of data collection

Wanted to find out best and worst performers in the flock

Ewes profiled based on breed, age, weight, BCS

October 2016 - Al'd ewes to CPT sires

- Gave a platform to assess ewes genetics against other flocks
- Improved accuracy's

Being open and collecting the right data

- Sheep Ireland App makes recording easier and more efficient
- Loads of new technologies make data recording easier
- Opportunity to take advantage of new enforcement of electronic tagging

Selecting Replacement Females

Replacements are sourced from Ewe lambs

Genetically

Ewe lamb chosen on Replacement Index higher than mature ewes average

2018 - €0.195 with 40% acc (If no change) 2019 - €0.915 with 42% acc

Selecting Replacement Females

Physically

Weight - 50 Kgs on Average Body Condition of 3.5 – 4.5 Physical examination

- 1. Legs
- 2. Feet
- 3. Teeth
- 4. No signs of ill health
- 5. Teats

Kilflynn Amigo MN1511041

Owner: Salesian Ag College (DQI: 93%); Pallaskenry Agricultural College, Pallaskenry, Co. Lim Breeder: Michael Neenan: Dromakee, Kilflynn, Tralee, Co. Kerry						
Animal IE042497511041A MN1511041 (CPT Sire) Kilflynn Amigo DOB: 27-Jan-2015 Belclare Male Triplet M & F Scanned: Yes Comment:	Ancestry PD102179 GS TF1001274 TF1201503 TF1201520 MD100953 GS GD TF091167	EuroStars 147179018 Replacement (€4.86) Terminal (€2.01) Acc 78% Rank Top 2% Acc 81% Lamb Survivability (2.06%) Poor Excellent Days to Slaughter -6.02 days 0% Top 6% 100% No. of Lambs Born (€0.49) 0% Top 26% 100% Daughters Milk (€3.02) 0% Top 3% 100%				

To think his superior genetics could have been lost!

5 Star Rams making a difference to Ewe Genetics

Flock gain since 2015 €1.79 gain on the Replacement Index €0.97 gain on the Terminal Index

5 Star Rams making a difference to Ewe Genetics

2018 season

Average litter weight at 40 days of age vs Ewes Daughters Milk star rating

Daughters Milk Stars

5 Star Rams making a difference to Ewe Genetics

Genetic Evaluation is the way forward

Salesian Ag College We strive to be the best in our field Sheep, Beef or Dairy We believe Genetic Evaluations will help get us there

Thank You

SusSheP

(Sustainable Sheep Production)

Eamon Wall – Sheep Ireland

Introduction

Overall aim of SusSheP

'To increase the sustainability and profitability of European Sheep Production by addressing key industry focused problems'

European Research Area Network Research Project

Introduction

- Cross country collaboration
- Ireland University of Limerick, Teagasc & Sheep Ireland
- UK SRUC, Maternal Sheep Group
- France INRA
- Norway Norwegian University of Life Sciences, NMBU, NSG

Introduction

- Three major targets (Work Packages)
- Labour Input and Carbon Hoofprint
- Factors affecting Sheep AI success
- Ewe Longevity

Labour Input and Carbon Hoofprint

• To characterise labour input and carbon hoofprint of different sheep production systems

Factors affecting Sheep AI success

- Investigate breed differences for AI success
- Explore physiology of the cervix (across 6 breeds)
- Significant variation exists in cervix makeup
 - Length, internal 'rings' & structure of opening

Factors affecting Sheep AI success

- Investigate breed differences for AI success
- Cervical mucus assessments viscosity, weight & colour

Weight

Colour

Viscosity

Sheep Ireland: Profit through science

- The missing link for Sheep Ireland
 - Economically important
 - Environmentally important
 - Missing from Sheep Ireland genetic evaluations
 - Poor data recording for this trait
- Sheep Challenge Vs Bovine?
 - National CMMS
 - Final destination and date of every animal known

- Longevity is not straightforward!
 - Why did the sheep disappear?
 - > Slaughtered?
 - ≥ Sold
 - ≥ Died
 - ≥ Do we even know the sheep is missing?

New Sheep Ireland Webscreens

www.sheep.le				Reason	Reason for Sale						
Animal	DOB	Sex	Breed	Sold for Breeding	Sold in Lamb	Sold as Store	Sold as Cull Ewe	Poor EuroStara	Not True to Type (doesn't meet breed standard)	Old Age / Functionality	Other
IE043743105765H, HUI1705765	31-JAN-2017	F	TX 属								Other •
IE043743105761J, HUI1705761	31-JAN-2017	F	TX 🗖						•		Other
IE043743105753C, HUI1705753	зо-ј/ <mark>25 р</mark>	005	ssib	le s	sale	e re	eas	ons	<mark>S</mark> -		Barren/Infertile
IE043743105758D, HUI1705758	° <mark>32 p</mark>	oss	sible	e d	eat	th r	rea	sor	าร		Hard Lambing Bad Mothering Ability
IE043743105751H, HUI1705751	30-JAN-2017	F	TX 🗖								Bad Milk Ability
IE043743105759F, HUI1705759	30-JAN-2017	F	TX 属								Abortion
IE043743105756J, HUI1705756	30-JAN-2017	F	TX 属								 Injury/Accident Under/Overshoot/Teeth
IE043743105747A, HUI1705747	29-JAN-2017	F	TX 🗖								Mastitis -
IE043743105735E, HUI1705735	29-JAN-2017	F	тх 🗖								Other

Sheep Ireland www.sheep.le LambPlus App available now!

Do you want to record your flock but don't know where to start?

Our newly released LambPlus App is currently available to all LambPlus breeders free of charge. This new phase of data recording makes it easier for LambPlus members to performance record their flock.

Lambing information, weights and health records (mastitis, lameness, BCS, dag score etc.) can all be recorded instantly via your smartphone.

Other features

- Bluetooth technology allows you to connect an EID reader to the App, making data recording guick and easy.
- Offline Capability allows you to record information without an internet connection Saves time
 User friendly
 Quick and easy to use
 More accurate Records
 Information uploaded straight to the Sheep Ireland database

- to the Sheep Treland database. to sign up today!
- LambPlus Reports
- Identifies the most profitable genetics in your flock

Where to find it?

This LambPlus App is available for download on Android and iOS devices and works well on tablets and phones equally.

App Store

GETITON

Google Play

- SusSheP & Longevity;
 - Use existing data

• Can we find early life predictors for longevity

• Building into national genetic breeding indexes

• Develops ways to accurately record longevity data

- Initial findings;
 - Main culling reasons vary from country to country
 - Some obvious common traits
 - ≥ Mastitis
 - ≥ Teeth loss
 - ≥ Age
 - ≥ Infertility (Barren)
 - ≥ Many more.....
 - Some uncommon across countries
 - ≥ Wolves, Bears, Lynx, Wolverine, Golden eagle (Norway)

• The future for this trait......

More Data will be sourced from;

- Ram breeders
- Sheep Ireland CPT
- Teagasc Better Farms
- New projects OviData

OviData EIP Project

Increasing sheep genetic gain in Ireland through scientific data capture and analysis

SusSheP

- End Product?
 - Unlock the potential for more widespread AI?
 - Learn more about labour on sheep farms & carbon produced?
 - Incorporate Longevity into Irelands national sheep indexes

SusSheP

• Thank ewe.....

