

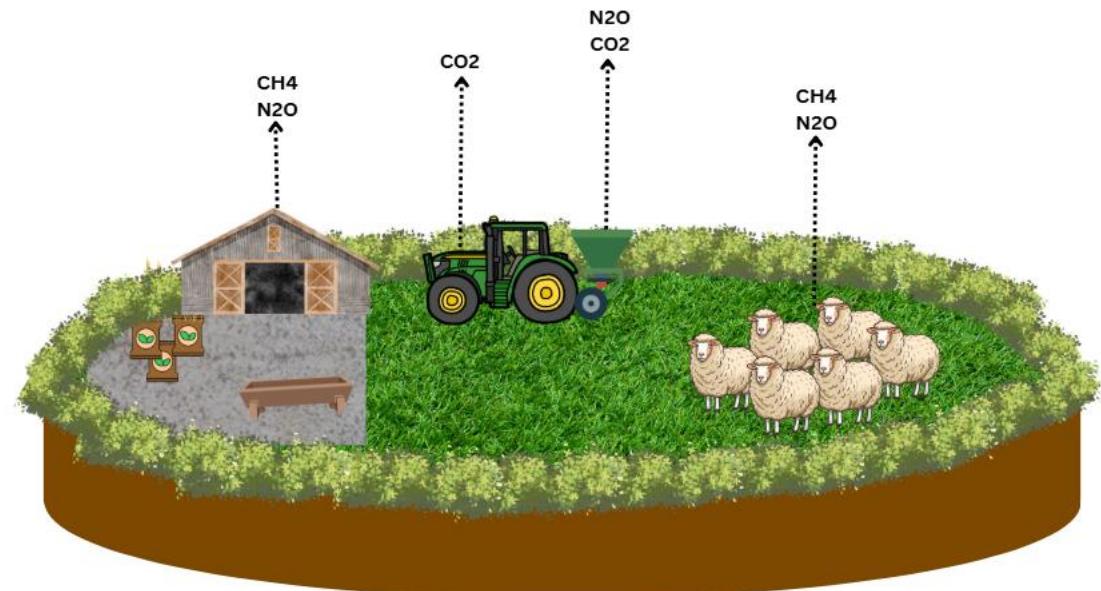
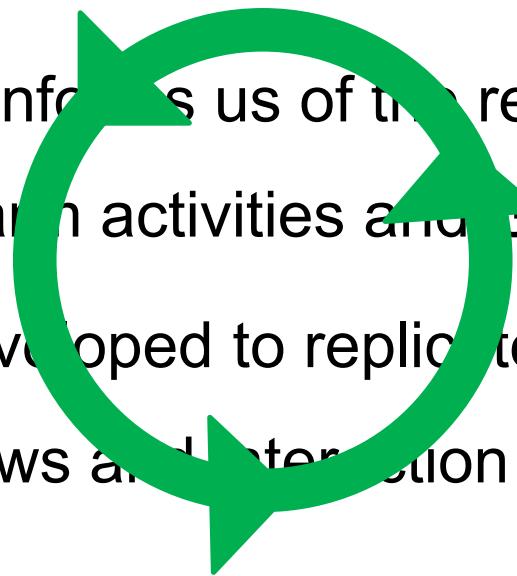


# Carbon values

**Jonathan Herron**

Teagasc, AGRIC, Moorepark, Fermoy, Co Cork.  
Phone: 025 42 306  
Email: [jonathan.herron@teagasc.ie](mailto:jonathan.herron@teagasc.ie)





# How to calculate GHG emissions

- GHG emissions from agriculture

- Numerous sources
  - Large variation in sources



- Research informs us of the relationships between farm activities and GHG emissions
- Models developed to replicate farm activities, nutrient flows and interaction within a farming system



# Bio-economic model

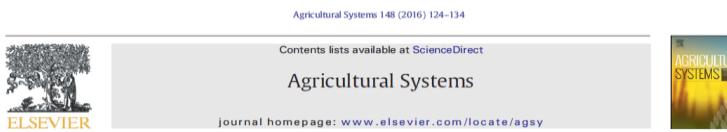


## Inputs



### Flock net energy

Grass, silage,  
concentrates


- Lambing pattern
- Land and capital
- Livestock
- Production
- Animal health
- Sales
- Variable costs
- Fixed costs
- Labour

## Outputs

Net profit



Financial  
Economic  
Physical



### Description and validation of the Teagasc Lamb Production Model

A. Bohan <sup>a,b,\*</sup>, L. Shalloo <sup>a</sup>, B. Malcolm <sup>d,e</sup>, C.K.M. Ho <sup>d</sup>, P. Creighton <sup>c</sup>, T.M. Boland <sup>b</sup>, N. McHugh <sup>a</sup>

<sup>a</sup> Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

<sup>b</sup> School of Agriculture & Food Science, University College Dublin, Dublin, Ireland

<sup>c</sup> Animal & Grassland Research and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland

<sup>d</sup> Department of Economic Development, Job, Transport and Resources, Carlton, Vic. 3053, Australia

<sup>e</sup> University of Melbourne, Vic. 3010, Australia

#### ARTICLE INFO

#### ABSTRACT

Livestock Science 227 (2019) 44–54



### Deriving economic values for national sheep breeding objectives using a bio-economic model

A. Bohan <sup>a,b,\*</sup>, L. Shalloo <sup>a</sup>, P. Creighton <sup>c</sup>, D.P. Berry <sup>a</sup>, T.M. Boland <sup>b</sup>, A.C. O'Brien <sup>a</sup>, T. Pabion <sup>d</sup>, E. Wall <sup>c</sup>, K. McDermott <sup>c</sup>, N. McHugh <sup>a</sup>

<sup>a</sup> Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

<sup>b</sup> School of Agriculture & Food Science, University College Dublin, Belfield Dublin 4, Ireland

<sup>c</sup> Animal & Grassland Research and Innovation Centre, Teagasc, Athenry, Co. Galway, Ireland

<sup>d</sup> Sheep Ireland, Highfield House, Slane, Co. Meath, Ireland



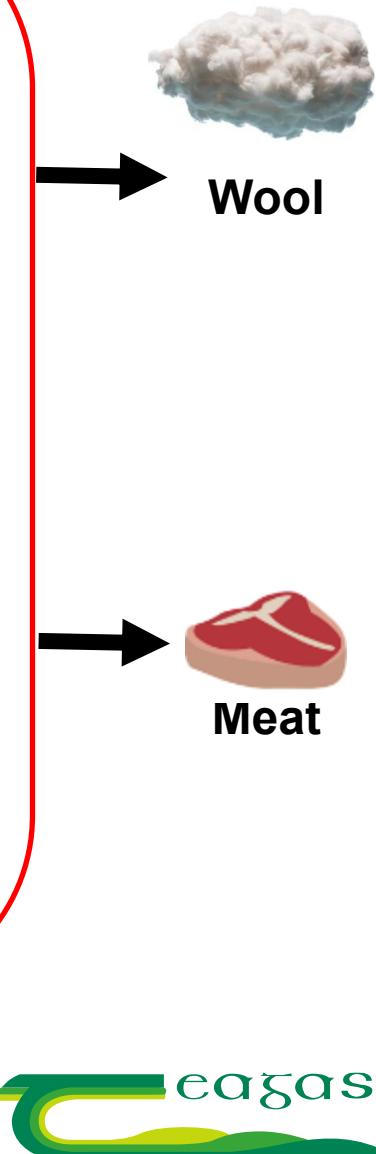
# Life Cycle Assessment

## Goal

Extend bio-economic models to calculate GHG emissions from a sheep farm

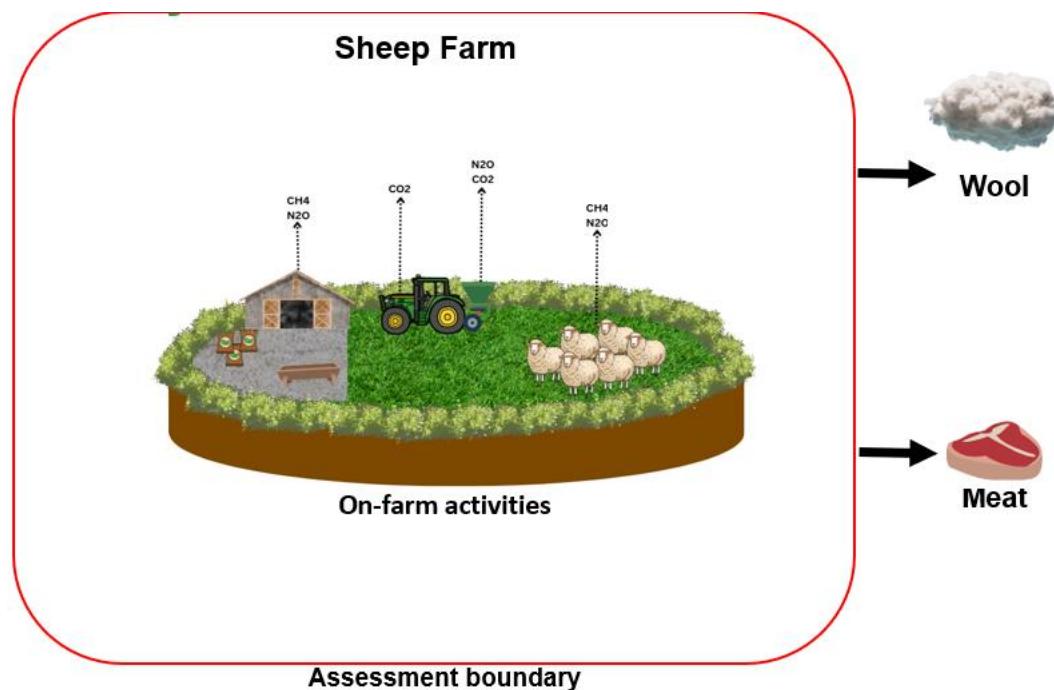
## Scope

Cradle to farm gate


- Total farm emissions
- Carbon footprint

## Type of emissions

Methane –  $\text{CH}_4$


Nitrous Oxide –  $\text{N}_2\text{O}$

Carbon Dioxide –  $\text{CO}_2$



# Modelling GHG emissions

Agricultural Systems 148 (2016) 95–104



Teagasc sheep LCA model is an extension of the Teagasc sheep bioeconomic model

Allow calculation of both economic performance and GHG emissions at the same time



Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: [www.elsevier.com/locate/agsy](http://www.elsevier.com/locate/agsy)



Teagasc National Sheep Conferences 2023

13

A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming

D. O'Brien <sup>a,\*</sup>, A. Bohan <sup>b</sup>, N. McHugh <sup>b</sup>, L. Shalloo <sup>a</sup>

<sup>a</sup> Livestock Systems Research Department, AGRIC, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland

<sup>b</sup> Animal & Bioscience Research Department, AGRIC, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland



## Greenhouse gas intensity of average sheep systems in Ireland

Jonathan Herron

Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork



Contents lists available at ScienceDirect

Agricultural Systems

journal homepage: [www.elsevier.com/locate/agsy](http://www.elsevier.com/locate/agsy)



Modelling the production, profit, and greenhouse gas emissions of Irish sheep flocks divergent in genetic merit

L. Farrell <sup>a,\*</sup>, J. Herron <sup>b</sup>, T. Pabiou <sup>c</sup>, N. McHugh <sup>b</sup>, K. McDermott <sup>c</sup>, L. Shalloo <sup>b</sup>, D. O'Brien <sup>d</sup>, A. Bohan <sup>c</sup>

<sup>a</sup> Teagasc Animal & Grassland Research and Innovation Centre, Mervue Campus, Athlone, H65 R7, Co. Galway, Ireland

<sup>b</sup> Animal & Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland

<sup>c</sup> Sheep Ireland, Highfield House, Shanagh, Bandon P72 X050, Co. Cork, Ireland

<sup>d</sup> Crops, Environment and Land Use Research Centre, Teagasc, Johnstown Castle, Co. Wexford, Ireland

# Sheep Euro –Star index

- Index aimed at helps farmers in the selection of more profitable breeding animals
  - Replacement Index
  - Terminal Index.
- Each index consists of traits that impact profitability according to its specific objective
- **The weighting on each trait in a breeding objective is called the economic value**
- **Economic value**
  - Change in profit per unit change in the trait under investigation holding all other traits constant
- **Derived from the Teagasc Lamb Production Model bio-economic model (TLPM)**
- **Index needs to be updated routinely based on:**
  - EU policy changes
  - Price of products change
  - Costs of production change

# Carbon value

## Economic value

Change in profit per unit change in the trait under investigation  
holding all other traits constant

## Carbon Value

Change in **total emissions** per unit change in the trait under investigation holding all other traits constant

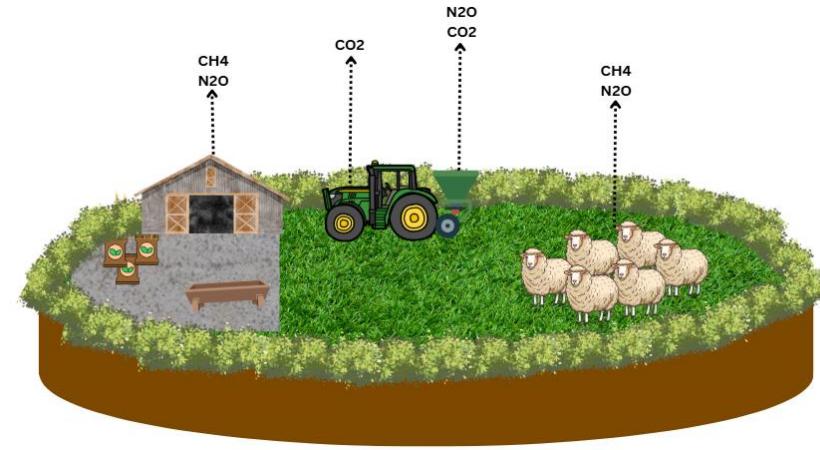
- Only traits that impact productivity and therefore GHG emissions have a carbon value
- Total carbon value is converted to an economic value by a price per tonne of carbon

# Deriving carbon value

**CH4**

Measured methane




Change \* €80/tonne CO2eq



Carbon value for trait

**Non CH4**

Calculated using LCA



Change \* €80/tonne CO2eq



Carbon value for trait

# Summary

- Focused on **Total Emissions** and not emissions intensities
- Increases economic weight of traits that reduce emissions
- Reduces economic weight on traits that increase emissions
- Direction towards more efficient animals and sustainable farming systems